Hierarchical Attention Network for Action Recognition in Videos

نویسندگان

  • Yilin Wang
  • Suhang Wang
  • Jiliang Tang
  • Neil O'Hare
  • Yi Chang
  • Baoxin Li
چکیده

Understanding human actions in wild videos is an important task with a broad range of applications. In this paper we propose a novel approach named Hierarchical Attention Network (HAN), which enables to incorporate static spatial information, short-term motion information and long-term video temporal structures for complex human action understanding. Compared to recent convolutional neural network based approaches, HAN has following advantages – (1) HAN can efficiently capture video temporal structures in a longer range; (2) HAN is able to reveal temporal transitions between frame chunks with different time steps, i.e. it explicitly models the temporal transitions between frames as well as video segments and (3) with a multiple step spatial temporal attention mechanism, HAN automatically learns important regions in video frames and temporal segments in the video. The proposed model is trained and evaluated on the standard video action benchmarks, i.e., UCF-101 and HMDB-51, and it significantly outperforms the state-of-the arts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Action Recognition and Video Description using Visual Attention

We propose soft attention based models for the tasks of action recognition in videos and generating natural language descriptions of videos. We use multi-layered Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units which are deep both spatially and temporally. Our model learns to focus selectively on parts of the video frames and classifies videos after taking a few glimpse...

متن کامل

Action Recognition using Visual Attention

We propose a soft attention based model for the task of action recognition in videos. We use multi-layered Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units which are deep both spatially and temporally. Our model learns to focus selectively on parts of the video frames and classifies videos after taking a few glimpses. The model essentially learns which parts in the fram...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

Hierarchical Multi-scale Attention Networks for action recognition

Recurrent Neural Networks (RNNs) have been widely used in natural language processing and computer vision. Among them, the Hierarchical Multi-scale RNN (HM-RNN), a kind of multi-scale hierarchical RNN proposed recently, can learn the hierarchical temporal structure from data automatically. In this paper, we extend the work to solve the computer vision task of action recognition. However, in seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.06416  شماره 

صفحات  -

تاریخ انتشار 2016